Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
During the last glacial period, the Northern Hemisphere climate underwent dramatic swings between relatively warm periods and cold periods—the Dansgaard–Oeschger oscillations. Here, we use recent progress in our theoretical understanding of the Atlantic meridional overturning circulation to develop a simple predictive model that relates variations in the overturning circulation to rapid changes in North Atlantic sea ice and the gradual recharge and discharge of the deep ocean temperature. The robustness of the model is tested against results from idealized general circulation model simulations, and exploration of its parameter space provides insights into the mechanisms dictating the overturning circulation’s response to atmospheric forcing variations. The theoretical model predicts that global atmospheric temperature and salinity fluxes control the relative length of stadial versus interstadial conditions and reproduces the evolving characteristics of theδ18O isotope ice core record over the last 100 kyr when forced only by the slowly changing global mean temperature. The findings indicate that the prominent climate variability observed in the Greenland ice cores is directly influenced by the gradual evolution of global temperatures and salinity fluxes. This variability can be attributed to a relatively simple physical mechanism that involves the interplay of fast positive sea ice and salt-advection feedbacks, along with a delayed negative deep-ocean-temperature feedback.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Abstract The Indo-Pacific Ocean appears exponentially stratified between 1- and 3-km depth with a decay scale on the order of 1 km. In his celebrated paper “Abyssal recipes,” W. Munk proposed a theoretical explanation of these observations by suggesting a pointwise buoyancy balance between the upwelling of cold water and the downward diffusion of heat. Assuming a constant upwelling velocity w and turbulent diffusivity κ , the model yields an exponential stratification whose decay scale is consistent with observations if κ ∼ 10 −4 m 2 s −1 . Over time, much effort has been made to reconcile Munk’s ideas with evidence of vertical variability in κ , but comparably little emphasis has been placed on the even stronger evidence that w decays toward the surface. In particular, the basin-averaged w nearly vanishes at 1-km depth in the Indo-Pacific. In light of this evidence, we consider a variable-coefficient, basin-averaged analog of Munk’s budget, which we verify against a hierarchy of numerical models ranging from an idealized basin-and-channel configuration to a coarse global ocean simulation. Study of the budget reveals that the decay of basin-averaged w requires a concurrent decay in basin-averaged κ to produce an exponential-like stratification. As such, the frequently cited value of 10 −4 m 2 s −1 is representative only of the bottom of the middepths, whereas κ must be much smaller above. The decay of mixing in the vertical is as important to the stratification as its magnitude . Significance Statement Using a combination of theory and numerical simulations, it is argued that the observed magnitude and shape of the global ocean stratification and overturning circulation appear to demand that turbulent mixing increases quasi-exponentially toward the ocean bottom. Climate models must therefore prescribe such a vertical profile of turbulent mixing in order to properly represent the heat and carbon uptake accomplished by the global overturning circulation on centennial and longer time scales.more » « less
-
Abstract A toy model for the deep ocean overturning circulation in multiple basins is presented and applied to study the role of buoyancy forcing and basin geometry in the ocean’s global overturning. The model reproduces the results from idealized general circulation model simulations and provides theoretical insights into the mechanisms that govern the structure of the overturning circulation. The results highlight the importance of the diabatic component of the meridional overturning circulation (MOC) for the depth of North Atlantic Deep Water (NADW) and for the interbasin exchange of deep ocean water masses. This diabatic component, which extends the upper cell in the Atlantic below the depth of adiabatic upwelling in the Southern Ocean, is shown to be sensitive to the global area-integrated diapycnal mixing rate and the density contrast between NADW and Antarctic Bottom Water (AABW). The model also shows that the zonally averaged global overturning circulation is to zeroth-order independent of whether the ocean consists of one or multiple connected basins, but depends on the total length of the southern reentrant channel region (representing the Southern Ocean) and the global ocean area integrated diapycnal mixing. Common biases in single-basin simulations can thus be understood as a direct result of the reduced domain size.more » « less
An official website of the United States government
